
Software
Modeling

5.1 translating requirement model into design
model

We work to transform analysis model into four levels of design detail: the data
structure, the system architecture, the interface representation, and the component level
detail. During each design activity, we apply basic concepts and principles that lead to
high quality of software.

Requirements modeling is an approach used in projects where
the requirements keep on evolving throughout the project. ... This will help ensure that
the project's exact requirements are documented clearly. By doing so, you can create a
strong foundation for the project's overall needs and specifications

• The term data model can refer to two distinct but closely related concepts. Sometimes it
refers to an abstract formalization of the objects and relationships found in a particular
application domain:

•for example the customers, products, and orders found in a manufacturing organization. At
other times it refers to the set of concepts used in defining such formalizations.

•The main aim of data models is to support the development of information systems by
providing the definition and format of data.

Data modelling generally begins at a conceptual, abstractive stage where ideas are broken
down into initial concepts. From there, the various broad components of the data system are
created without any detail.

5.2 Analysis Modeling

• Analysis Model is a technical representation of the system. It acts as a link between system
description and design model.

•In Analysis Modelling, information, behavior and functions of the system is defined and translated
into the architecture, component and interface level design in the design modeling.

Objectives of Analysis Modelling:

It must establish a way of creation of software design.

It must describe requirements of customer.

It must define set of requirements which can be validated, once the software is built.

Elements of Analysis model
 Data Dictionary:

It is a repository that consists of description of all data objects used or produced by
software. It stores the collection of data present in the software. It is a very crucial
element of the analysis model. It acts as a centralized repository and also helps in
modelling of data objects defined during software requirements.

 Entity Relationship Diagram (ERD):
It depicts relationship between data objects and used in conducting of data modelling
activity. The attributes of each object in the Entity Relationship Diagram can be described
using Data object description. It provides the basis for activity related to data design.

Data Flow Diagram (DFD):

It depicts the functions that transform data flow and it also shows how
data is transformed when moving from input to output.

It provides the additional information which is used during the analysis
of information domain and serves as a basis for the modeling of
function.

It also enables the engineer to develop models of functional and
information domain at the same time.

State Transition Diagram:
It shows various modes of behavior (states) of the system and also shows the
transitions from one state to other state in the system. It also provides the details of how
system behaves due to the consequences of external events. It represents the behavior
of a system by presenting its states and the events that cause the system to change
state. It also describes what actions are taken due to the occurrence of a particular
event.

Process Specification:
It stores the description of each functions present in the data flow diagram. It describes
the input to a function, the algorithm that is applied for transformation of input, and the
output that is produced.

Control Specification:
It stores the additional information about the control aspects of the software. It is used to
indicate how the software behaves when an event occurs and which processes are
invoked due to the occurrence of the event. It also provides the details of the processes
which are executed to manage events.

Data Object Description:
It stores and provides the complete knowledge about a data object present and used in
the software. It also gives us the details of attributes of the data object present in Entity
Relationship Diagram. Hence, it incorporates all the data objects and its attributes.

• 5.3 Design Modeling

•A design model in software engineering is an object-based picture or pictures that
represent the use cases for a system.

•Or to put it another way, it's the means to describe a system's implementation and
source code in a diagrammatic fashion. This type of representation has a couple of
advantages.

Fundamental design concepts
Abstraction:-

Abstraction refers to a powerful design tool, which allows software designers to consider
components at an abstract level.

Functional abstraction: This involves the use of parameterized subprograms. Functional
abstraction can be generalized as collections of subprograms referred to as 'groups'.

Data abstraction: This involves specifying data that describes a data object. For example,
the data object window encompasses a set of attributes (window type, window dimension)
that describe the window object clearly.

Control abstraction: This states the desired effect, without stating the exact mechanism of
control. For example, if and while statements in programming languages (like C and C+
+) are abstractions of machine code implementations, which involve conditional instructions.

 INFORMATION HIDING:-

Modules should be specified and designed in such a way that the data structures and
processing details of one module are not accessible to other modules. They pass only
that much information to each other, which is required to accomplish the software
functions.

Information hiding is of immense use when modifications are required during the testing
and maintenance phase.

IEEE defines information hiding as 'the technique of encapsulating software design
decisions in modules.

Structure:-

It refers to the structure of the system, which is composed of various components of a
program/ system, the attributes (properties) of those components and the relationship
amongst them. It enables the software engineers to analyze the software design
efficiently.

Modularity:-

Modularity is achieved by dividing the software into uniquely named and addressable
components, which are also known as modules. A complex system (large program) is
partitioned into a set of discrete modules in such a way that each module can be
developed independent of other modules

•Concurrency:-

•In software design, concurrency is implemented by splitting the software into multiple
independent units of execution, like modules and executing them in parallel.

•In other words, concurrency provides capability to the software to execute more than
one part of code in parallel to each other.

•verification is the task of determining if the implementation of a model has been done
correctly.

•Beyond program debugging, this means that verification data needs to be generated at
various points in the model for comparison with expected values.

• Aesthetics :-

•is a core design principle that defines a design's pleasing qualities.

•In visual terms, aesthetics includes factors such as balance, color, movement, pattern,
scale, shape and visual weight.

• Designers use aesthetics to complement their designs' usability, and so enhance
functionality with attractive layouts.

•Aesthetics in software has the same role as in science in general - it is a powerful tool
for motivation of the developer, a symptom of expert knowledge, a way to measure
quality.

•5.4 Design notations
•They are used when planning and should be able to communicate the purpose of a
program without the need for formal code.

•Commonly used design notations are: Pseudocode. Flow charts.

•A Data Flow Diagram (DFD) is a traditional visual representation of the
information flows within a system.

•A neat and clear DFD can depict the right amount of the system requirement graphically.
It can be manual, automated, or a combination of both

structured flowchart :-

essentially helps the mission to create new algorithms by encapsulating a range of data
points inside an inter-linked illustration.

 However, the flawless creation of such a diagram demands that software designers
create a top-level flowchart that clearly reflects the problem.

A flowchart is a type of diagram that represents a workflow or process. A flowchart can
also be defined as a diagrammatic representation of an algorithm, a step-by-step
approach to solving a task.

⮚Decision tables :

•Decision table is a brief visual representation for specifying which actions to
perform depending on given conditions. The information represented in decision
tables can also be represented as decision trees or in a programming language
using if-then-else and switch-case statements.

• A decision table is a good way to settle with different combination inputs with
their corresponding outputs and also called cause-effect table. Reason to call
cause-effect table is a related logical diagramming technique called cause-effect
graphing that is basically used to obtain the decision table.

 5.5 Testing

Software Testing Methodology is defined as strategies and testing types used to certify
that the Application Under Test meets client expectations.

Hence Testing Methodologies could also refer to Waterfall, Agile and other
QA models as against the above definition of Testing Methodologies.

Purpose

Description: Software testing is the process of verifying a system with the purpose of
identifying any errors, gaps or missing requirement versus the actual
requirement. Software testing is broadly categorized into two types -
functional testing and non-functional testing.

 Model-based testing is an application of model-based design for designing and
optionally also executing artifacts to perform software testing or system testing.

 Models can be used to represent the desired behavior of a system under test (SUT),
or to represent testing strategies and a test environment.

Testing Methods:

Black-Box:

Black box testing involves testing a system with no prior knowledge of its internal
workings. A tester provides an input, and observes the output generated by the system
under test.

 Black box testing is a powerful testing technique because it exercises a system end-to-
end.

Black-box testing is a method of software testing that examines the functionality of an
application without peering into its internal structures or workings. It is sometimes
referred to as specification-based testing.

•Black-box testing, also called behavioral testing, focuses on the functional requirements of the
software. That is, black-box testing enables the software engineer to derive sets of input
conditions that will fully exercise all functional requirements for a program.

• Black-box testing is not an alternative to white-box techniques. Rather, it is a complementary
approach that is likely to uncover a different class of errors than white-box methods.

• Black box testing is applied in final stages of testing.

•Black-box testing attempts to find errors in the following categories:

1. incorrect or missing functions

2. interface errors

3. errors in data structures or external data base access

4. behavior or performance errors, and

5. initialization and termination errors

White-Box:

•White-box testing, sometimes called glass-box testing

•It is a test case design method that uses the control structure of the procedural design to derive
test cases.

• These control structures are described as component level design to derive test cases .
•Characteristics :

1) Guarantee that all independent paths within a module have been exercised at least once

2) Exercise all logical decisions on their true and false sides

3) Execute all loops at their boundaries and within their operational bounds, and

4) Exercise internal data structures to ensure their validity.

Level of Testing
Unit Test:

In computer programming, unit testing is a software testing method by which
individual units of source code—sets of one or more computer program modules
together with associated control data, usage procedures, and operating procedures—
are tested to determine whether they are fit for use.

Writing and maintaining unit tests can be made faster by using parameterized tests.
These allow the execution of one test multiple times with different input sets, thus
reducing test code duplication

The goal of unit testing is to isolate each part of the program and show that the
individual parts are correct

Integration Testing
Integration testing (sometimes called integration and testing, abbreviated I&T) is the
phase in software testing in which individual software modules are combined
and tested as a group.

Integration testing is conducted to evaluate the compliance of a system or component with
specified functional requirements.

is the process of testing the interface between two software units or module. It’s focus on
determining the correctness of the interface.

 The purpose of the integration testing is to expose faults in the interaction between
integrated units. Once all the modules have been unit tested, integration testing is
performed.

Big-Bang Integration Testing –
It is the simplest integration testing approach, where all the modules are combining and
verifying the functionality after the completion of individual module testing.

In simple words, all the modules of the system are simply put together and tested. This
approach is practicable only for very small systems.

 If once an error is found during the integration testing, it is very difficult to localize the
error as the error may potentially belong to any of the modules being integrated.

Bottom-Up Integration Testing –
In bottom-up testing, each module at lower levels is tested with higher modules until all
modules are tested.

The primary purpose of this integration testing is, each subsystem is to test the
interfaces among various modules making up the subsystem.

This integration testing uses test drivers to drive and pass appropriate data to the lower
level modules.

Top-Down Integration Testing –
Top-down integration testing technique used in order to simulate the behavior of the
lower-level modules that are not yet integrated.

In this integration testing, testing takes place from top to bottom.

First high-level modules are tested and then low-level modules and finally integrating
the low-level modules to a high level to ensure the system is working as intended.

Mixed Integration Testing –
A mixed integration testing is also called sandwiched integration testing.

A mixed integration testing follows a combination of top down and bottom-up testing
approaches. In top-down approach, testing can start only after the top-level module
have been coded and unit tested.

In bottom-up approach, testing can start only after the bottom level modules are ready.
This sandwich or mixed approach overcomes this shortcoming of the top-down and
bottom-up approaches.

A mixed integration testing is also called sandwiched integration testing.

User Acceptance
User Acceptance Testing (UAT) is the final stage of any software development life cycle.
This is when actual users test the software to see if it is able to carry out the required
tasks it was designed to address in real-world situations.

UAT testers aim to validate changes that were made against original requirements.

also known as beta or end-user testing, is defined as testing the software by the user or
client to determine whether it can be accepted or not.

This is the final testing performed once the functional, system and regression testing are
completed.

This is typically the last step before the product goes live or before the delivery of the
product is accepted.

5.6 Test Documentation
Test case Template:

A test case template is a document containing an organized list of test cases for
different test scenarios that check whether or not the software has the intended
functionality.

 Other than the executable steps, a test case also contains preconditions
for testing, test data provided, expected outcome, and actual result.

Software test case templates are blank documents that describe inputs, actions, or
events, and their expected results, in order to determine if a feature of an application is
working correctly.

Test case templates contain all particulars of test cases.

Test plan

A test plan is a document detailing the objectives, resources, and processes for a
specific test for a software or hardware product.

The plan typically contains a detailed understanding of the eventual workflow.

A test plan documents the strategy that will be used to verify and ensure that a product
or system meets its design specifications and other requirements.

A test plan is usually prepared by or with significant input from test engineers.

Test plan document formats can be as varied as the products and organizations to
which they apply.

Introduction to defect report
DEFECT REPORT, also known as Bug Report, is a document that identifies and
describes a defect detected by a tester.

 The purpose of a defect report is to state the problem as clearly as possible so that
developers can replicate the defect easily and fix it.

A defect report documents an anomaly discovered during testing. It includes all the
information needed to reproduce the problem, including the author, release/build
number, open/close dates, problem area, problem description, test environment, defect
type, how it was detected, who detected it, priority, severity, status, etc.

The first step is to define the defect by writing a summary in the defect title and
providing a general description of the problem.

Test Summary Report

The test summary report outlines the summation of software testing activities and
final testing results.

Software testers are required to communicate testing results and findings to project
stakeholders on the completion of a testing cycle.

The definition of a Test Summary is as simple as the name suggests.

Also known as a Test Closure Report, it provides stakeholders with a condensed account
of the overall test results, defects and connected data following a test project.

Test report is an assessment of how well the Testing is performed.

Test Report is a document which contains a summary of all test activities and final test
results of a testing project.

	Slide 1
	5.1 translating requirement model into design model
	Slide 4
	5.2 Analysis Modeling
	Slide 6
	Elements of Analysis model
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Fundamental design concepts
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Level of Testing
	Integration Testing
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	User Acceptance
	5.6 Test Documentation
	Test plan
	Introduction to defect report
	Test Summary Report

